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1. Introduction

The field of Artificial Recursive Neural Networks (ARNN’s) is meeting a lot of excitement nowadays.
Both because of their achievements in solving real world problems and their simplicity of the
underlying principles that still allow them to mimic their biological counterparts. All this excitement
attracts people from many different fields such as Neurophisiology, Biology and Computer Science,
among others.

We present our work in the Computer Science perspective. The view we are interested in, is the one in
which an ARNN can be seen as a computing mechanism able to perform some kind of computation
based on a program coded as a specific arrangement of neural artefacts, like neurons and synapses.

This work implements a compiler and a simulator based on the previous Turing Universality of Neural
Nets (Revisited) [Neto et al. 97a] paper. In [Gruau et al 94], [Siegelmann 96] and [Neto et al. 97b]
similar ideas are given but they are based on higher level languages.

To help the user getting into this work we start by giving the underlying theoretical context on which
it is based. In section 2, we give a brief review of the partial recursive function theory. In section 3 we
present our approach for constructing neural networks from partial recursive functions, together with
some minor modifications we introduced. The explanation of how we adapted [Neto et al. 97a]
                                                          
* This work was supported by JNICT PBIC/TIT/2527/95
† Completed during May 1998.

Abstract

In the work of [Siegelmann 95] it was showed that Artificial Recursive Neural
Networks have the same computing power as Turing machines. A Turing
machine can be programmed in a proper high-level language - the language of
partial recursive functions. In this paper we present the implementation of a
compiler that directly translates high-level Turing machine programs to
Artificial Recursive Neural Networks. The application contains a simulator
that can be used to test the resulting networks. We also argue that experiments
like this compiler may give us clues on procedures for automatic synthesis of
Artificial Recursive Neural Networks from high-level descriptions.
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theoretical material into a compiler is given in section 4. Section 5 refers to the simulator and usage
examples and section 6 concludes this work. The simulator is freely available at
http://www.di.fc.ul.pt/~jpn/nwb/nwb.html.

 2. Partial Recursive Function theory

When informally speaking of a neural computer, one could be motivated about what could it be like, the
language to program such a machine. The language that we will use is the one of  partial recursive
functions (PRF). Although primitive when compared to modern computer languages, it is simple and
powerful  enough to program any mechanism with same computing power as a Turing machine w.r.t.
the class of functions it can compute. Surely, building complex programs with this language would be
very difficult and more appropriate languages exist. For our purposes however, this language is suited.

The PRF theory identifies the set of computable functions with the set of computable functions on .
Such functions are called partial because we do not require them to be defined for every value of the
domain. Technically this is accomplished by adjoining a special symbol, “ ” , to the function co-
domain on which the undefined values are mapped. These functions are also called recursive, because
each one can be obtained by recursive application of 3 rules (operations) over the axioms (the base set).

We shall use α(x1,…,xn) �β(x1,…,xn) to denote equality of the expressions α(x1,…,xn) and β(x1,…,xn),
if and only if, α(x1,…,xn) and β(x1,…,xn) are defined for any (x1,…,xn) or both undefined.

The axioms also called primitive functions are:

• W that denotes the zero-ary constant 0;

• S that denotes the unary successor function S(x)=x+1;

• U(i,n) that for i and n fixed, denotes the corresponding element Ui,n(x1,..,xn) = xi (1�i�n) of
the n-ary projection function family.

The construction rules are:

• C, that denotes the composition. Formally: if f 1(x1,…,xn), …, fk(x1,…,xn) and g(y1,…,yk) are

PRFs, then h(x1,…,xn)  g(f1(x1,…,xn), …, fk(x1,…,xn)) is also a PRF;

• R, that denotes the recursion. Formally: if f(x1,…,xn) and g(x1,…,xn,y,z) are PRFs, then the
unique function h(x1,…,xn,y) defined by

1) h(x1,…,xn,0)  f(x1,…,xn) and

2) h(x1,…,xn,y+1)  g(x1,…,xn,y,h(x1,…,xn,y)) is also a PRF;

• M, that denotes the minimalisation. Formally: if f(x1,…,xn,y) is a PRF, then h(x1,…,xn) 
µy(f(x1,…,xn,y)=0) is also a PRF. Where,

µy(f(x1,…,xn,y)=0) =

for instance f(x,y)=x+1 is a PRF and is given by the expression C(U(1,2),S). The function
f(x,y)=x+y is also a PRF given by the expression R(U(1,1),C(U(3,3),S). In fact, it is shown that
every Turing computable function is a PRF. More details on PRF theory can be found in [Cutland 80]
and [Boolos 80].

Least y such that f(x1,..,xn,y)=0 and ∀z≤y, f(x1,…,xn,z) ≠ .
��there is no such y.
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3. Coding PRF into ARNNs

Finding a systematic way of generating ARNN’s from given descriptions of PRF’s greatly simplifies the
task of producing neural nets to perform certain specific tasks. Furthermore, it also gives a proof that
neural nets can effectively compute all Turing computable functions as treated in [Neto et al 97a].
In this section we briefly describe the computing rule of each processing element, i.e. each neuron.
Further we present the coding strategy of natural numbers to load the network. Finally we will see how
to code a PRF into an ARNN.

3.1 How do the processing elements work ?

Like in [Neto et al 97a] we make use of σ-processors. In each instant t each neuron i updates its activity
xi in the following non-linear way:

where aij, bij and ci are rational weights; N is the number of neurons, M the number of input streams uj;
and σ is the continuous function defined below:

3.2 How can we represent the numbers ?

We use an unary representation where each natural number is represented as a rational number by means

of a code mapping (n) :  where,

(n) is given by

3.3 How to construct the ARNN ?

The following three net schemas were implemented to compute the corresponding three axioms of
recursive functions theory. Changes were made to [Neto et al 97a] presentation. First, the W axiom is
provided with two additional neurons. Second, each U(i,n) axiom is constructed with only three neurons
making it more efficient.
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The rules are illustrated by the net schemas of figures v), vi) and vii), where grey coloured circles
represent repeated neurons. The Sg box represents a subnet that finds if a given number is positive or
zero:
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The unary zero net represents the function f(x)=0 and it is provided for optimisation purposes.

For each PRF expression an ARNN is generated using the structure of the expression. The construction
of the ARNNs is in a top-down fashion, beginning with the outermost ARNN and then continuously
instantiating ARNNs until we reach the axioms. In the expression R(U(1,1),C(S,U(3,3)) we
would first build the network  for the recursion, then instantiate with the projection axiom network and
with the composition rule network, that in turn would accommodate the successor and projection axiom
networks.

This instantiation mechanism for the network schemas consists of replacing the boxes by compatible
network schemas. A box is said to be compatible with a network schema if the number of inputs
(respectively outputs) of the box is the same as the number of inputs  (respectively  outputs) of the
network schema. The substitution operation of a box by a network schema consists of connecting the
box inputs (respectively outputs) to the network inputs (respectively outputs).

4. Putting the pieces together and building the compiler

The tool we want to present to the user, should be capable of handling more complex functions than the
simple examples used in the previous sections. Specifying a more complex function implies writing a
more complex expression. This motivates the use of a modular and yet simple language to increase
readability.

In this section we present the language we built to write PRFs,  which is no more than some syntactic
sugar added to the mathematical language of PRFs  described in section 2, to allow for modular
description of a target PRF. The programming “methodology” and semantic constraints are presented
afterwards. We finish by giving some insight of how the compiler is itself implemented.
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4.1 Language grammar

PRF descriptions are written using the following grammar:

1. Funct_spec È stmt_seq
2. Stmt_seq È stmt | stmt_seq stmt
3. Stmt È ‘#define’ id expr | ‘#target’ id
4. Expr È rule | axiom | id
5. Rule È ‘C(’ expr_list ‘)’ | ‘R(’ expr_list ‘)’  | ‘M(’ expr_list ‘)’
6. Axiom È ‘W’ | ‘S’ | ‘U(’ num ‘,’ num ‘)’
7. Expr_list È expr | expr_list ‘,’  expr
8. Id È char (char | digit | symbol)*
9. Num È digit+
10. Digit È ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
11. Char È ‘A’ | … | ‘Z’ | ‘a’ | … | ‘z’
12. Symbol È ‘!’ | ’” ’ | ’#’ | ’$’ | ’%’ | ’&’ | ’+’ | ’-‘ | ’.’ | ’/’ | ’[‘ | ’\’ | ’]’ | ’^’ | ’_’ | ’{‘ | ’}’

The grammar presented above is compatible with our initial requirements. To allow for PRFs to be
specified easily we made the following modification  on rule n.3 and added rule n.13:

3. Stmt È expr_stmt | ‘#target’ id
13. Expr_stmt È ‘#define’ id expr | id expr | expr

This means that we can omit #define and also id from rule n. 3. In the first case id will be used as a
reference to expr and in the later case an id of the form exprn (where n is the expression number) is
generated at compile-time.

By default the compiler assumes that the PRF being specified is the last one. We can change this, by
using the #target directive.

4.2 How to build a PRF description ?

A PRF description is a sequence of statements where each statement is a pair that contains an identifier
and an expression. The identifiers label the statement of an associated expression. Each expression is
written in the language of PRF described in section 2  (recursive application of rules to rules and
axioms) and may reference a previous statement. For example, when specifying the product PRF we can
initially write the statement for the sum PRF and follow it by a shortened product PRF expression in
which the sum sub-expression is substituted by the initial sum identifier as shown below.

sum R(U(1,1), C(U(3,3), S))
product R(Z, C(U(3,3), U(1,3), sum))

The idea is to write further expressions making use of the previously defined ones. A more detailed
example is given in section 5.

4.3 Programming constraints

There are some programming constraints that must be respected when building PRF descriptions but
those are not captured by the EBNF grammar described in section 4.1. Mainly, we cannot apply rules (C,
R and M)  to an arbitrary number of parameters (axioms, rules, identifiers) . Each expression results in a
PRF with a well defined arity and in most rules the number of parameters accepted in a rule and their
arities depend by turn on each others arities. A summary of these constrains is given in the tables below,
where capital X denotes x1,…,xn.

Axioms

Arity Constraints Description # Param. Arity
Zero – W None 0 0 0
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Successor – S None f(x) = x+1 0 1
Projection – U(i,n) i�Q fI(x1,…,xi,…,xn) = xi 2 N

Rules

Arity Constraints Description # Param. Arity

Composition –
C(f1,…,fk,g)

f1.Arity=…=fk.Arity and
g.Arity = k

h(X)=g(fi(X)) g.Arity+1 f i.Arity

Recursion – R(f, g) g.Arity=f.Arity+2 h(X,0)=f(X)
h(X,y+1)=g(X,y,h(X,y))

2 f.Arity+1

Minimalisation – M(f) None min y such that f(X,y)=0 1 f.Arity- 1

We also implemented the f(x)=0 PRF  (unary zero-function) for convenience. We felt that it will help
the user not having to write the R(W, U(2,2)) expression so often.

Built-in Expressions

Arity constraints Description # Param. Arity
Unary Zero – Z None f(x)=0 1 1

Following the trend of most traditional programming languages, references to statements that have not
been defined are not allowed. This program is also case sensitive.
4.4 How does the compiler work ?

A PRF description written in the presented language is compiled sequentially. A symbol table is present
to keep the identifiers used to label the expressions. At each step the compiler tries to build the parsing
tree corresponding to the expression being analysed and checks for arity/number of parameters and
naming  inconsistencies as presented in section 4.3.

When using an identifier to refer to another expression, the compiler builds a link from the expression
being parsed to the referenced expression. By means of this process the compiler is capable of
constructing the complete tree of the target expression. The tree can then be browsed for some
debugging purpose and used to derive the corresponding ARNN.

The ARNN is built from the parsing tree, creating a network schema for each rule and axiom node and
then using the ARNN schema instantiating procedure, we build the final network. The reference links
are treated as pass-troughs.

5. Using the simulator and compiling examples

An application was built to provide the user not only a compiler of PRF into ARNNs but also a
simulator that among other things allows step-by-step simulation and inspection groups of neurons.

In our application there are two modes of building ARNNs: by compiling the PRFs or by reading the
dynamic equations system that define the neural network. We do not only allow the storage of PRF
description, but also of compiled PRF in order to avoid recompiling and to provide input to other
simulation tools.

The simulator takes the built ARNN, configures it to read the input. Then it requests each neuron to
process data. This process is iterated until a signal is seen in the OUT line of the outmost network.

During the ARNN computation, the program allows the user to inspect the computations that are taking
place inside the net, being able to select some sets of neurons and customise the animation. The user can
also see the corresponding equation of each neuron and define a limit for the number of iterations (if 0,
no limit).

Each neuron is given a name by the compiler with special meaning.  The name of each neuron expresses
particular information on the neuron we are working with, in the following way:
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XFuncTypeNum_Depth_Id
Where,

• Func is one of  Z, W, S, U(i,j), R, C, M
• Type is one or more of the following:

In Stands for the IN line supporting neurons.
Out Stands for the OUT line supporting neurons.
Data Stands for neurons that receive parameters from external networks

or that send result of computation to other networks.
Res Stands for neurons that handle results of functions.
Hid Stands for neurons that are not in one of the border layers.

• Num is the number of the neuron inside its network schema.
• Depth is the same as the depth in the parsing tree of the PRF that the  network corresponds to.
• Id is used to ensure an unique identifier for each neuron.

5.1 A screenshot of the application (simulator)
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5.2 Function description examples

Some examples of function descriptions are given in the table bellow:

Function Expression
f=0 W

f(x)=0 Z

f(x)=x+1 S

f(x,y,z)=y U(2,3)

f(x,y,z)=z+1 C(U(3,3),S)

f(x,y)=x+y R(U(1,1),z+1)

f(x,y)=x*y R(Z,C(U(3,3),U(1,3),x+y))

f(x)=x! R(C(Z,S),C(U(2,2),C(U(1,2),S),x*y)

f(x)=pot(x,y) R(C(Z,S),C(U(1,3),U(3,3),x*y)

f(x)=sg(x) R(W,C(U(1,2),C(Z,S)))

f(x)=sg(x) R(C(W,S),C(W,U(1,2)))

f(x,y)=x-1 R(W,U(1,2))

f(x,y)=x-y R(U(1,1),C(U(3,3),x-1))

f(x,y)=|x-y| C(x-y,C(U(2,2),U(1,2),x-y),x+y)

f(x,y)=min(x,y) C(U(1,2),x-y,x-y)

f(x,y)=max(x,y) C(C(x-y,x+y),C(C(x-y,x+y),C(x-y,x-y),x-y),x+y)

f(x,y)=rm(x,y) R(Z,C(C(U(3,3),S),C(C(U(1,3),C(U(3,3),S),|x-y|),sg),x*y))

f(x,y)=x|y C(rm,sg)

f 
-1

(y) M(C(C(C(U(2,2),fx),U(1,2),|x-y|),sg)

As an example, let us consider the following description of the sum function:

proj/1 U(1,1)
proj/2 U(3,3)
comp C(proj/2,S)
sum R(proj/1,comp)

After the compilation of these four statements we have an ARNN with 39 neurons and 70 synapses with
the following dynamic equation system:

XRin_1_0(i+1) = σ(Ein(i))
XRhid2_1_1(i+1) = σ(XRin_1_0(i))
XRhid3_1_2(i+1) = σ(0.1*XRin_1_0(i)+XRhid3_1_2(i)+XRhid4_1_3(i)-XRhid5_1_4(i)
 -XREout_1_15(i))
XRhid4_1_3(i+1) = σ(0.1*XRhid3_1_2(i)+XRhid5_1_4(i)-0.9)
XRhid5_1_4(i+1) = σ(XRhid6_1_5(i))
XRhid6_1_5(i+1) = σ(XSout_4_7(i))
XRhid7_1_6(i+1) = σ(XRhid3_1_2(i)+XRhid15_1_14(i)-1)
XREres_1_7(i+1) = σ(XRhid13_1_12(i)+XRhid19_1_18(i)-1)
XRhid9_1_8(i+1) = σ(XRhid5_1_4(i)+XU(1,1)inout_3_0(i))
XRhid10_1_9(i+1) = σ(0.2*XRhid9_1_8(i)+10*XRdatay_1_10(i)-1.2)
XRdatay_1_10(i+1) = σ(-XRhid9_1_8(i)+XRhid10_1_9(i)+XRdatay_1_10(i)-XREout_1_15(i)
 +Edata2(i))
XRhid12_1_11(i+1) = σ(XRhid9_1_8(i))
XRhid13_1_12(i+1) = σ(2*XRhid12_1_11(i)-100*XRhid14_1_13(i)-1)
XRhid14_1_13(i+1) = σ(XRdatay_1_10(i)-0.1)
XRhid15_1_14(i+1) = σ(2*XRhid12_1_11(i)+100*XRhid14_1_13(i)-2)
XREout_1_15(i+1) = σ(XRhid13_1_12(i))
XRhid17_1_16(i+1) = σ(XRhid15_1_14(i))
XRhid18_1_17(i+1) = σ(XRhid15_1_14(i)+XRhid19_1_18(i)-1)
XRhid19_1_18(i+1) = σ(-XREout_1_15(i)+XRhid19_1_18(i)-10*XRhid20_1_19(i)
 +XRhid21_1_20(i)+XU(1,1)datares_3_1(i))
XRhid20_1_19(i+1) = σ(XSres_4_9(i))
XRhid21_1_20(i+1) = σ(XRhid20_1_19(i))
XRdata1_1_21(i+1) = σ(XRdata1_1_21(i)-XREout_1_15(i)+Edata1(i))
XRhid22_1_22(i+1) = σ(XRdata1_1_21(i)+XRin_1_0(i)-1)
XRhid23_1_23(i+1) = σ(XRdata1_1_21(i)+XRhid15_1_14(i)-1)
XU(1,1)inout_3_0(i+1) = σ(XRhid2_1_1(i))
XU(1,1)datares_3_1(i+1) = σ(XRhid22_1_22(i))
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XU(1,1)data_3_2(i+1) = σ(0)
XChid1_3_3(i+1) = σ(-XChid1_3_3(i)+XChid8_3_7(i))
XChid2_3_4(i+1) = σ(XChid1_3_3(i))
XChid6_3_5(i+1) = σ(-XChid7_3_6(i)+XChid6_3_5(i)+XU(3,3)datares_5_4(i))
XChid7_3_6(i+1) = σ(XChid6_3_5(i)+XChid1_3_3(i)-1)
XChid8_3_7(i+1) = σ(-XChid1_3_3(i)+XChid8_3_7(i)+XU(3,3)inout_5_3(i))
XU(3,3)inout_5_3(i+1) = σ(XRhid17_1_16(i))
XU(3,3)datares_5_4(i+1) = σ(XRhid18_1_17(i))
XU(3,3)data_5_5(i+1) = σ(XRhid23_1_23(i)+XRhid7_1_6(i))
XSin_4_6(i+1) = σ(XChid2_3_4(i))
XSout_4_7(i+1) = σ(XSin_4_6(i))
XSdata_4_8(i+1) = σ(XChid7_3_6(i))
XSres_4_9(i+1) = σ(XSin_4_6(i)+0.1*XSdata_4_8(i)-0.9)

6. Conclusion

We hope to have taken one step further in understanding the relationship between programming
languages and ARNNs. We started presenting a theoretical framework of a very simple programming
language. Next we described a systematic way of obtaining ARNNs from programs written in the
presented language and concluded with the presentation of a tool where one can  get a practical insight
of the presented results. Although the ideas here contained may seem oversimplified  w.r.t. real-world
applications, adapting them to other more elaborate frameworks like those of process calculi appears to
be straightforward. Finally, we also defend that the search for a language more suited to the architecture
of ARNNs can give us fresh views on efficient approaches for systematic construction of ARNN.
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